
OAuth and OpenID

Presented By :Riya Arora

OpenID Connect

 An identity layer that sits on top of OAuth 2.0 protocol.

 Enables client to verify identity of end user based on authentication done by

authorization server

 Obtains profile info of end user

 OAuth it’s an open standard for authorization provides authorization but not

authentication

 It can extend OAuth so applications can get identity information.

 The OpenID Connect flow looks the same as OAuth.

 The only differences are, in the initial request, a specific scope of openid is used

 In the final exchange the Client receives both an Access Token and an ID Token

Application of OAuth

Basic Concepts

 Participants: End User, Relying party, Identity provider

 Identity Tokens:An ID Token is a specifically formatted string of characters known
as a JSON Web Token

 Claims: The data inside the ID Token are called claims.Are used to retrieve

info.Eg:name,email

 Scopes: used to request that specific sets of info made available as claim
values. The granular permissions the Client wants, such as access to data or to
perform actions. Eg:openid,profile ,email

OAuth terms

 Resource Owner: An entity capable of granting access to a protected
resource.

 Resource Server: Server hosting the protected resource.Eg:Google

 Client: An application making protected resource requests on behalf of the
resource owner and its authorization.

 Authorization server: Issues access tokens to client.

 Authorization grant:The user consents the access to resource.

 Access Token: The key the client will use to communicate with
the Resource Server.

 Redirect Uri: The URL the Authorization Server will redirect the Resource
Owner back to after granting permission to the Client. (Callback URL)

 Response Type: The type of information the Client expects to receive.

 Authorization Code: A short-lived temporary code the Client gives
the Authorization Server , in exchange for an Access Token.

OAuth flow

1. Resource Owner, want to allow the Client, to access contacts so they can send
invitations to all your friends.

2. The Client redirects your browser to the Authorization Server and includes with the
request the Client ID, Redirect URI, Response Type, and one or more Scopes it needs.

3. The Authorization Server verifies who you are, and if necessary prompts for a login.

4. The Authorization Server presents you with a Consent form based on
the Scopes requested by the Client. You grant (or deny) permission.

5. The Authorization Server redirects back to Client using the Redirect URI along with
an Authorization Code.

6. The Client contacts the Authorization Server directly (does not use the Resource
Owner’s browser) and securely sends its Client ID, Client Secret, and the Authorization
Code.

7. The Authorization Server verifies the data and responds with an Access Token.

8. The Client can now use the Access Token to send requests to the Resource Server for
your contacts.

OAuth flow

OAuth flows
 OpenID Connect defines The following authentication flows:

 Authorization code flow:

 A client application (a) makes an authorization request to an authorization endpoint,
(b) receives a short-lived authorization code, (c) makes a token request to a token
endpoint with the authorization code, and (d) gets an access token.

 Implicit flow:

 A client application (a) makes an authorization request to an authorization endpoint
and (b) gets an access token directly from the authorization endpoint.

 Resource Owner Password credentials flow

 A client application (a) makes a token request to a token endpoint and (b) gets an
access token. In this flow, a client application accepts a user's ID and password
although the primary purpose of OAuth 2.0 is to give limited permissions to a client
application WITHOUT revealing the user's credentials to the client application.

 Client credentials flow

 A client application (a) makes a token request to a token endpoint and (b) gets an
access token. In this flow, user authentication is not performed and client application
authentication only is performed.

OAuth tokens

 Tokens are retrieved from endpoints on the authorization server.

 Access Token : Represents an authorization that a client may have to do

something on behalf of user

 The token that the client uses to access the Resource Server (API).

 They’re meant to be short-lived.

 Can be used by a specific client app

 It has a time out.

 Refresh Token: Allows clients to obtain a fresh access token

without reobtaining authorization from resource owner.

 This is much longer-lived; days, months, years.

 This can be used to get new token

Grants Types in OAuth

 Methods to get access tokens from the authorization server are called grants.

 The four basic grant types are:

1. Authorization Code

2. Implicit

3. Resource Owner Credentials

4. Client Credentials

 Grant types are choosen based on access token owner and client type.

 Client credentials are used on batch processes without a resource owner.

 Resource owner credentials is used when client app is trustworthy.

 Authorization code is used when client app delegates resource owner

credentials to authorization server and consent is needed

 Implicit is used when client app is a user agent based app

OpenID Connect

ID Token

 Issued by identity provider

 Contains attributes or claims about end user { Claims }

▪ Subject

▪ Issuing Authority

▪ Audience

▪ Issue Date

▪ Expiration Date

➢ ID Token is encoded as a JSON Web Token(JWT) and is digitally signed.

JWT

 A JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact
and self-contained way for securely transmitting information between parties as a
JSON object.

 This information can be verified and trusted because it is digitally signed.

 JWTs can be signed using a secret or a public/private key pair.

 Structure:

 1.Header:The header typically consists of two parts: the type of token, which is
JWT, and the hashing algorithm

 2.Payload: The second part of the token is the payload, which contains the claims.

 3.Signature: To create the signature part, you have to take the encoded header,
the encoded payload, a secret, the algorithm specified in the header, and sign that.

https://tools.ietf.org/html/rfc7519

JWT

Header:

{

“alg”:”HS256”,

“typ”:”JWT”

}

Payload:

{

“sub”:”123456”,

“name”:”xyz”

“email”:”xyz@gmail.com”

}

Signature:

HMACSHA256(

base64UrlEncode(header) + "." +

base64UrlEncode(payload),

secret)

 Authentication: Answering who am I with a proof of identity.

 Authorization: What a user is allowed to do.

