
Absence of Anti-CSRF Tokens

Description

No Anti-CSRF tokens were found in a HTML submission form after scanning the website using OWASP
ZAP. CSRF attacks are effective in a number of situations, including:

 * The victim has an active session on the target site.
 * The victim is authenticated via HTTP auth on the target site.
 * The victim is on the same local network as the target site.

CSRF has primarily been used to perform an action against a target site using the victim's privileges,
but recent techniques have been discovered to disclose information by gaining access to the response.
The risk of information disclosure is dramatically increased when the target site is vulnerable to XSS,
because XSS can be used as a platform for CSRF, allowing the attack to operate within the bounds of
the same-origin policy.

No known Anti-CSRF token [anticsrf, CSRFToken, __RequestVerificationToken, csrfmiddlewaretoken,
authenticity_token, OWASP_CSRFTOKEN, anoncsrf, csrf_token, _csrf, _csrfSecret, __csrf_magic, CSRF]
was found in the following HTML form: [Form 2: "a_otp_1"].

Solution

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, use anti-CSRF packages such as the OWASP CSRFGuard.

Phase: Implementation
Ensure that your application is free of cross-site scripting issues, because most CSRF defenses can
be bypassed using attacker-controlled script.

Phase: Architecture and Design
Generate a unique nonce for each form, place the nonce into the form, and verify the nonce upon
receipt of the form. Be sure that the nonce is not predictable (CWE-330).
Note that this can be bypassed using XSS.

Identify especially dangerous operations. When the user performs a dangerous operation, send a
separate confirmation request to ensure that the user intended to perform that operation.
Note that this can be bypassed using XSS.

Use the ESAPI Session Management control.
This control includes a component for CSRF.

Do not use the GET method for any request that triggers a state change.

Phase: Implementation
Check the HTTP Referrer header to see if the request originated from an expected page. This could
break legitimate functionality, because users or proxies may have disabled sending the Referer for
privacy reasons.

References

http://projects.webappsec.org/Cross-Site-Request-Forgery
http://cwe.mitre.org/data/definitions/352.html

Evidence:

<form method="post" class="mb_10 mt_10" onsubmit="return verify_otp()" id="verify_otp_form">

http://projects.webappsec.org/Cross-Site-Request-Forgery
http://cwe.mitre.org/data/definitions/352.html

	Description
	Solution
	References
	Evidence:

